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4. CONCLUSIONS

➢ Easily implementable system proposed, which forms a narrow

air ventilation channel between backside of PV modules and top side

of roof.

➢Model developed and experimentally validated demonstrating huge

potential for assessing the system feasibility across diverse locations.

1. INTRODUCTION 

2. PV-T MODEL AND EXPERIMENTAL VALIDATION

3. REAL CASE STUDY

➢ PV-T represents a promising technology in urban environments: limited

space + high local thermal and electrical energy demands.

➢ This study proposes a straightforward BAPV-T system, by forming an air

ventilation channel, which implies minimal adjustments during PV modules

installation and low complexity of the equipment and control set-up.

➢ A simulation model has been developed and validated to design the system

and evaluate its performance.
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➢ 3 PV modules (same model) monitored at

CENER´s rooftop:

✓ M1: Air ventilation channel at rear side

✓ M2: Standard in-field configuration

✓ M3: Thermally insulated rear side

➢ All 3 modules electrically biased at their MPP

➢Multiple variables continuously monitored:

global irradiance, ambient temp., wind speed,

module’s temp. in different areas, temp. and air

velocity in the channel, module’s power, etc.

➢ Thermography images periodically captured

➢ IWER building (Pamplona, Spain), South-east oriented roof with 19º tilt.

➢ 5 in-portrait HJT PV modules per channel (8.9 m x 1.0 m).

General simulations conditions

Advanced simulation results: Different fan-control strategies

➢ Real case study, three fan control strategies assessed: 2.3% in annual net energy

balance; 8.1ºC (avg.) in air temperature at the channel exit; 31.6ºC (max.) in

operating module temperature.

➢ Potential extension of PV modules lifespan due to reduction in operating

temperature.

➢ Future work: 1 - further optimization of control strategy (wind speed, seasonal dependency); 2 - assessment of potential uses of warm air

(space heating, DHW); 3 - economical analysis of the proposed solutions (cost-effectiveness through the whole lifetime).

Proposed BAPV-T concept Considered parameters/layers Designed 1-D conductive model

Comprehensive transient thermal model using the Modelica framework

Modelling validation though a 3-month experimental campaign

Deep analysis shows strong agreement between simulated results and

experimental data, even with highly fluctuating conditions

Experimental results validate thermal modelling at module level

➢ Typical Meteorological Year (TMY) of Pamplona used as meteo-input.

Preliminary simulation results: Influence of channel height & air velocity

Annual generated PV Energy 
improvement due to channel (%) (*)

Average Air temperature 
increase through channel (ºC) (*)

(*) Relative variation 
values compared to 
the case of rear-side 
insulated modules

Air Velocity PV production

Channel height
PV production

PV production

Air Velocity Air temperature

Channel height Air temperature

IWER building

3D building 
model

➢ Linear control: Air flow

proportional to irradiance level

➢ 4-step control: 4 low-power

fans in ON/OFF operation

➢Optimized 4-step control:

Control-parameters values are

optimized (maximizing net

energy balance) by applying a

differential evolution algorithm.

3 different ventilation fan-
control strategies

Comparison different 
constant forced air flows

➢ Increasing forced air velocity

significantly reduces module

temperature (i.e. down to

-19ºC with constant 5 m/s).

difficult to implement.

number of working fans

depends on equivalent

steps of irradiance.

Simulated modules temp. for three air flows 
during a period of high irradiance 

Channel height constant at 10 cm

Annual simulated results for three fan 
control strategies proposed (relative 

to standard rooftop installation)

➢ Settings from iterative optimization 

process allow improving the net 

energy balance.
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Temporal evolution of solar
irradiance, wind speed, and primary
energy-related simulated results,
during a clear sunny summer day,
for the three forced-ventilation
control strategies

2.11 m/s

96 W/m2

293 W/m2

4-step opt.

Max. Air velocity

Irradiance 1st fan ON

3.00 m/s

200 W/m2

400 W/m2

4-stepLinear

3.00 m/s    
@ 1000 W/m2

-

-

Control strategy

Irradiance 2nd fan ON

Irradiance 3rd fan ON

Irradiance 4th fan ON

490 W/m2600 W/m2-

687 W/m2800 W/m2-

Net energy balance = PV 
generation - fan consumption 

*This work has been selected
by the Committee of the EU
PVSEC 2024 for submission to
the Journal EPJ Photovoltaics.
Currently under revision.
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