ADVANCED PV AND THERMAL MODELING FOR A FEASIBLE AND
EFFICIENT BAPV-T SYSTEM DESIGN AND EVALUATION
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1. INTRODUCTION 3. REAL CASE STUDY

g > PV-T represents a promising technology in urban environments: I|m|ted General simulations conditions

space + high local thermal and electrical energy demands. »> IWER building (Pamplona, Spain), South-east oriented roof with 199 tilt.

» This study proposes a straightforward BAPV-T system, by forming an air » 5 in-portrait HJIT PV modules per channel (8.9 m x 1.0 m).

ventilation channel, which implies minimal adjustments during PV modules » Typical Meteorological Year (TMY) of Pamplona used as meteo-input.

installation and low complexity of the equipment and control set-up.
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Proposed BAPV-T concept Considered parameters/layers Designed 1-D conductive model 3 different ventilation fan-

e s N e control strategies

» Linear control: Air flow
proportional to irradiance level

» difficult to implement.

> 4-step control: 4 low-power
fans in ON/OFF operation
» number of working fans
depends on equivalent
steps of irradiance.

» Optimized 4-step control:
Control-parameters values are
optimized (maximizing net
energy balance) by applying a
differential evolution algorithm.

Net energy balance = PV
generation - fan consumption

> 3 PV modules (same model) monitored at
\ CENER "s rooftop:

v" M1: Air ventilation channel at rear side

v M2: Standard in-field configuration

v M3: Thermally insulated rear side

» All 3 modules electrically biased at their MPP

» Multiple wvariables continuously monitored:

} global irradiance, ambient temp., wind speed,
module’s temp. in different areas, temp. and air
velocity in the channel, module’s power, etc.

Control strategy Linear 4-step 4-step opt. |

> Thermography images periodically captured
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4. CONCLUSIONS

» Easily implementable system proposed, which forms a narrow > Real case study, three fan control strategies assessed: $ 2.39% in annual net energy
air ventilation channel between backside of PV modules and top side balance; 1 8.1°C (avg.) in air temperature at the channel exit; ¥ 31.6°C (max.) in
of roof. operating module temperature.

> Model developed and experimentally validated demonstrating huge > Potential extension of PV modules lifespan due to reduction in operating
potential for assessing the system feasibility across diverse locations. temperature.

» Future work: 1 - further optimization of control strategy (wind speed, seasonal dependency); 2 - assessment of potential uses of warm air
(space heating, DHW); 3 - economical analysis of the proposed solutions (cost-effectiveness through the whole lifetime).
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